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In this paper we consider scalar hyperbolic equations in one space dimension of the type 

d 
u,(x, t) + -f(u; x) = h(u; x) 

dx 

4x, 0) = &3(x), XER, t>o, 
(1) 

where f E C’ and h continuous w.r.t. tl, X. The initial condition is assumed to be piecewise con- 
tinuous. We present a new method for constructing the entropy solution of (1) at a fixed time 
f = T> 0 in one time step based on transporting the initial values along characteristics. If the 
solution of (1) is smooth, we get the exact solution; in case of shocks the multivalued graph 
of the initial data is corrected by a geometrical averaging technique via the conservation 
principle. The method is also applicable to a scalar equation in which there is a mild coupling 
between the physical dimensions in the problem, for example, 

~,(.Gc.)+$/(~;x, .d+-$f(w. y)=h(u;x, Y). 

By a change of variables, (2) can be reduced to a quasi one-dimensional problem. We conjec- 
ture that the advantage of computing the entropy solution at a fixed time in one time step 
cannot easily be carried over to systems. But we have some hints that this might be possible 
in case of scalar equations in two space dimensions with arbitrary fluxes f,, f2. The CPU time 
depends only on the total number of shocks which occur in the entropy solution up to time 
r; the accuracy of the computed shock position is of order at least lo-‘. Since our method 
is not based on a time discretisation, questions (and problems) concerning stability and 
convergence do not arise. 4? 1991 Academic Press, Inc. 

1. INTRODUCTION 

The subject of the paper is to introduce the geometrical shock correction method 
(GSC method) for calculating the entropy solution of scalar hyperbolic conserva- 
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tion laws with source term in one space dimension. We consider the Cauchy 
problem 

u,+-$(u;x)=h(u;x) 
(1.1) 

4x, 0) = u,(x), XER, t>o, 

where f E C’ and h is continuous w.r.t. U, x. The initial condition u0 is assumed to 
be piecewise continuous. Furthermore, the GSC method is also applicable to scalar 
two-dimensional problems whenever the fluxes fi, f2 permit a reduction to quasi 
one-dimensional problems via a change of the independent variables. With further 
mild restrictions on the fluxes fi, f2 and the source term h, stated in Section 2, 
problem (1.1) has a global unique weak solution in the sense of Kruzkov [ 121. 

Hyperbolic equations describe wave motions and (1.1) may describe flow 
problems in which dissipation of energy occurs, for example, flow in porous media 
with source terms present. A concrete example is given by the Buckley-Leverett 
equation in Section 5 of this paper. 

The GSC method is a very efficient numerical method for constructing the solu- 
tion of (1.1) in one space dimension (resp. two space dimensions in case of fi = fi) 
at a fixed time t = T > 0 in one time step. This procedure is based on the classical 
method of characteristics and a new algorithm for determination of the shock posi- 
tions via a conservation principle. If the transport of the initial condition along 
characteristics at time T leads to a “multivalued relation” (in this case the method 
of characteristics fails to solve (1.1) for t = T), at leat one shock wave occurs. The 
following (x, u)-diagram (Fig. 1) shows the “multivalued relation” (represented by 
a curve) of Example 5 in Section 5 at time t = 0.4. In Sections 3 and 4 we show that 
such ambiguities can be easily resolved by our GSC-method. 

FIGURE 1 
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In 1972 Marle [ 131 described a heuristical method, based on physical observa- 
tions, for constructing the weak solution from a three-valued relation of a two- 
phase flow problem in a porous medium. This method, where two areas must have 
the same measure, dates back to Brinkman’s work [3] in 1949. He presumes that 
it might be possible to construct the solution consisting of a single shock by 
this physically motivated principle. A similar statement holds for the simplified 
“Tangential-Method,” developed by Welge [15] in 1952, for constructing the 
approximate shock position of some special problem geometrically. The shock 
determination in [IS] is described entirely on the fixed curve of the flux by drawing 
all chords with the equal area property in the (x, f)-plane (method of convex hull). 
In this approach, the shock position as well as the two limit states at time t = T 
are given implicitly by solving an integral equation coupled with two nonlinear 
equations. In contrast, the GSC method is much simpler. 

In 1981 Brenier [2] took up the concept of “conservation of areas” for his trans- 
port-collapse-method. This method, based also on the theory of characteristics and 
a certain averaging of the multivalued relation, leads to a convergent and stable 
time discrete numerical procedure. 

Since the GSC method computes the exact solution in one time step, indeed the 
shock positions are at least correct to 10p2, there arise no questions concerning 
stability, convergence, and the quality of the solution in the presence of shock and 
rarefaction waves. Hence, in contrast to any finite difference method, we have no 
time step restrictions by a CFL condition. The effect of the CFL condition is 
demonstrated by the following simple example in one space dimension, taken from 
[ll]. Let 

.rru)-f, 

1 

24; x < 0.5 
uo(x) = 24 + sin(rc(x - 0.5)); 0.5 < x < 2.5 

24; x > 2.5. 

Choosing Ax = 0.04 results in At < Ax/max If’(~)1 < l/625. Selecting At = 0.008 
and computing u at time T= 2 in the interval [48, 511 with the TVD scheme of 
Harten, see [9], took around 31 min on an IBM AT 80286. This numerical solution 
is very smeared in the vicinity of the single shock appearing at x,~ = 49.544. 

In comparison, the GSC method gives the solution with excellent quality in 
6.37 s, which is approximately 300 times faster. 

The CPU time of the GSC method at time T is directly proportional to the 
number of appearing shocks; hence there might be only a small increase in the 
computing time for growing T, which again is totally in contrast to any finite 
difference method. In conclusion, the GSC method computes the exact solution for 
all generic situations especially for larger T in a fraction of time required for any 
finite difference method. However, it seems that there is no obvious extension of the 
GSC method to hyperbolic systems. 

The paper is organized as follows. In Section 2 we pose the problem and give a 
brief summary of the method of characteristics before introducing the conservation 
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principle which leads to the geometrical shock correction in case of u, + (f(u)), = 0. 
In Section 3 we continue with the GSC method showing that the algorithm resolves 
any multivalued configuration and extend the method to the general equation (1.1) 
in one space dimension. Applications of GSC to special Cauchy problems in two 
space dimensions are given in Section 4. Finally, in Section 5, we show some 
numerical examples. 

2. THE METHOD OF CHARACTERISTICS AND THE CONSERVATION PRINCIPLE 

Consider the Cauchy problem for a single conservation law with source term h: 

ur + Ef(u)l, = 44 x, 21, XE R, t>o 
u(x, 0) = u() (x). 

(2.1) 

We assume that the flux f, the source term h, and u0 satisfy the following conditions 
(see [ 121): 

0) A k f,, f,,, f,, h,, h, are continuous. 
(ii) For (u, x, t) E [ -A4, M] x R x [0, T], M, T> 0, the functions f,, and 

g = h -f, are bounded, 
(iii) sup(h(0, x, t); (x, t) E [w x [0, T]} < c0 = const, sup(h,,(u, x, t); (x, t) E 

R x [0, T]; - a3 < u < 00 } < cl = const, 

(iv) u0 is a bounded measurable function. 

Remark. If f depends only on u and if h = 0, we require only f E C’ and (iv). 
Condition (iii) prevents the escape of u from every compact subset of the state 
space. Since global smooth solutions do not exist in general, we consider weak 
(distributional) solutions, which are not unique. Therefore one needs an entropy 
condition in order to select the physically relevant solution, see, e.g., [12]. The 
permissible curves of discontinuity are related by the Rankine-Hugoniot condition, 

SCUI = C.04 4 t)l, 

where [u] = u, - u, is the jump across a smooth curve r and s = dx/dt is the speed 
of discontinuity. 

Under the assumptions (i)-(iv) Kruzkov shows in [ 123 the existence, uniqueness, 
and stability w.r.t. the initial condition of the weak solution of (2.1). 

After these preparations we first describe our method for the problem 

ut + Cf(u)l, = 0, XER, t>o, 

44 0) = WJ (x) 
(2.2) 
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where either (a) u0 is continuous or (b) u0 is bounded with a finite number of jump 
discontinuities. Introducing the system of ordinary differential equations for (2.2) 

du 
z=o, (2.3) 

and defining for each (x, w) E R*, 

(X(x, w; t), U(x, w; t)) = F(x, w; t) 

to be the unique solution to (2.2) with (x, W) as initial value at t = 0, the following 
result is classical 

PROPOSITION (Method of characteristics). Let u0 be continuous. Any classical 
(i.e., C’) solution to (2.2) satisfies G(t) = FG(O), where G(t) denotes the graph to 
(2.3) at time t, G(t) = {(x, w) E R2; w = u(x, t)}. 

In other words, the graph of the solution is transported by the flow F associated 
with (2.3). Of course, the method of characteristics fails to solve (2.2) in the large, 
no matter how smooth the initial data are. Hence, there is no reason for FG(0) to 
remain a graph for every t > 0. Generally, FG(0) becomes multivalued and defines 
no longer a solution of (2.2). Instead of G(t) we consider in our method the sub- 
graph SC(t) of the solution at time t, given by the transport along characteristics, 

SG(t) = ((x, w) E R2; w Q u(x, t)}. 

As long as u remains smooth, we have ,SG(t) = FSG(0). Afterwards FSG(0) and 
E%(O) define the same multivalued relation, see [2]. An illustration is given in 
Fig. 2. Explicit integration of (2.3) gives F(x, w; t) = (x + t!(w), w); hence 

FG(0) = {(x, w); (x - tf’(w), w) E G(O)}. 

FIGURE 2 
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In the same way, FSG(0) = {(x, w); (x - f(w), w) E SG(O)}. If u0 is only piecewise 
continuous (as in the case of Riemann problems) the transport at time t does not 
give a connected curve. In the jump points of ZQ, we insert the vertical line between 
the left and right limit values, i.e., for 

Ml (x); x<x, 

u2 (xl; 
u,(x)= . 

x1<x<x2 1: f u, (XL x>x, 

we consider the modified initial condition 

I 

w=u,(x); x<x, 
{w;u~(x~)6wa42(x,)}; ~&~)--~(-dor 

u?(x) = 
{w42(x,)~w~~I(xI)}; 

1; 

u,(x,)>u2(-y1) 
w = u2 (x); x1<x<x2 

w = u,(x); x>x,. 

Then the transport gives a connected curve. We shall motivate this modification by 
a simple Riemann problem for (2.2): 

%(X) = i 
24,; x<o 
2.4,;X>0,U,,U,ElR. (2.4) 

For simplicity we assume that f~ C2, f” > 0 and let t = T> 0 be arbitrary, but 
fixed. In the first case, U, < u,, the solution consists of a rarefaction wave which 
connects the two constant states U, and u,. Within the fan of this wave the solution 
is implicitly given by 

x = Tf’(s), U/Q s < 24,. 

The transport of (2.4) leaves a gap between x = Tf’(u,) and x = Tf’(u,), where 
the solution is a priori undefined, whereas the entropy solution is given by the 
transport of the modified initial condition. 

In the case uI> u,, the two constant states are connected by a shock wave with 
speed s = [f]/[u]. The limit characteristics with slope l/f’(q) (resp. l/f’(q)) define 
the multivalued region in the (x, t)-plane. The transport of the initial data at time 
T> 0 results in a disconnected multivalued relation. Inserting however x = Tf’(s), 
U, < s d uI (which is the transported vertical line U, < w < uI, inserted in the initial 
condition, see u$ above with n = 2 and x, = 0), the corresponding curve in the 
(x, u)-diagram results in a connected multivalued relation, see Fig. 3. B. van Leer 
[14] associates this case with the occurrence of an overturned centered compres- 
sion wave. 
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FIGURE 3 

In generic situations one of the following two alternatives occur: Transport of the 
eventually modified initial data at time T > 0 results in either 

(a) a (unique) connected graph in the (x, U) space, which represents the 
entropy solution, or 

(b) in a multivalued relation in certain parts of the (x, U) space. 

Case (b) indicates the presence of at least one shock wave. The following definition 
is useful in describing the method. 

DEFINITION. (a) An interval [a, b] c iw is said to be an isolated single-valued 
region (ISR), if the mapping H,: x -+ u(x, T), x E M, u given by the transport, is 
unique for all x E [a, b]. 

(b) A multivalued region (MR) is an interval which does not represent an 
isolated single valued region. 

(c) An interval [x,, x,] c [w consisting of the union of multivalued regions, 
lJ:= i [x,,, x,] is said to be an isolated multivalued region (IMR), if the following 
three conditions hold: 

(i) there exists no Mc [x,, x,], such that HT(x), XE M, is unique for 
XEM 

(ii) there exists E,, s2 >O such that H, is unique in {x; cl <xdx,; 
X,<X<E2} 

(iii) x,=min{x ,,; 1 <i<n}, x,=max{x,; 1 <i<n}. 

This definition enables us to divide the MR is a disjoint union of ISR and IMR. 

Note. The correction of the MR can be done separately for every IMR because 
of the uniqueness of the solution in the ISR. 

3. THE GSC METHOD 

We will show how to construct the entropy solution from the MR and that this 
can be done numerically in an efficient way. The transport combined with this 
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correction procedure is called the GSC method. The correction procedure is based 
on the following conservation principle. Let [a, b] denote an IMR and A(T) the 
(algebraic) area of the entropy solution at time t = T> 0 over [a, b]. The transport 
may give a multivalued relation ti(x, T) and C(T) represents the (algebraic) area of 
{(x, t;); a <x < b}; i.e., C(T) is the area of the subgraph of u0 given by the transport 
at time T. Then 

,4(T)= C(T) 

defines the entropy solution uniquely. This is equivalent to requiring 

meas (SG( T)\FSG(O)) = .,mFUa;, (FSG(O)\SG( T)), (3.1) 
.xt [u,b] 

where meas is the Lebesgue measure of A, see [2]. This principle can be 
expressed in the following way: Assume that the multivalued relation over [a, b] 
can be resolved by a single shock at position x,. Then, the sum of the (algebraic) 
areas bounded by zi(x, T), x 6 x,, and the vertical line x=x, equals the sum of the 
areas between x=x, and G(x, T) for U,,E C([w) this is shown by the example in 
Fig. 4. 

The curve is split up in three parts, where vi(x), i= 1,2, 3, denotes the arcs 
between the corresponding points P,, P,, P,, and P,, respectively. x, is the 
unknown shock position. Then, 

W)=j”b C~,(x)--v2(x)+~~(x)Idx a 

b x 

FIGURE 4 

581/95/l-4 
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since the shock connects u1 (x,~-) and v,(x,~+ ). Hence, 

C(T)-A(T)=j” [ux(x)--u2(x)l dx+jh [v,(x)--z(x)] dx 
u x\ 

or, equivalently, 

j-x’ [u:!(x)-u3(x)] dx= j” [u,(x)-u2(x)] dx. 
cl x, 

This determines x, uniquely. The hatched areas in Fig. 4 have equal measure. 
In order to resolve more complicated situations in an IMR we need a further 

definition. 

DEFINITION. A point (x, ti(x, T)) is said to be a turning point of zi(x, T), if there 
exists a 6 > 0 such that for all points ( y, ti( y, T)), (z, c(z, T)) E K, ((x, 6(x, T))), 

(z - x)(x - y) B 0 

holds, where K,((x, ti(x, T))) denotes a circle with center (x, c(x, T)) and radius 
p, 0 < p < 6. 

It is important to note that the configuration in IMR as well as the number and 
the size of such regions depend on uO, fT and t = T. Furthermore, the conservation 
principle must be applied to every IMR separately. Only two situations have to be 
resolved in an IMR: (a) There are no interactions between the occurring waves, or 
(b) some (or all) waves have been interacted. 

We remark that the transport of the (eventually) modified initial data at time T 
defines uniquely the configuration. Hence, we show that the GSC method always 
gives the solution in case of generic situations for the Cauchy problem (2.2). 

The proof is by induction over the number of elementary waves, i.e., smooth 
states, rarefaction waves, and shocks, where the former two are represented by 
pieces of the curve in the IMR at time T > 0. The case of a single shock has been 
treated above. If only two waves of type shock/rarefaction resolve the ambiguities 
in the isolated region, there exist only two possibilities, either: 

(i) two shock waves, i.e., four turning points; or 
(ii) a shock wave and a rarefaction wave appear; now two turning points 

define the IMR. 

Passing through the curve, two turning points are assigned to each single 
ambiguity. Possibility (i) has to be resolved as follows: 
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The provisional positions of the two shocks, x,,, xS2, are determined by principle 
(3.1). Depending of the values of x,, and xSZ, one of the following three cases occur: 

(4 If xsz > x,,, then there is no interaction between the shocks and they are 
separated by a smooth state. This resolution is unique. 

(b) For x,~, > x,, remains a MR; thus the shocks have interacted. Again, the 
correct position x,~, xSZ < x,~ < x,~, of the single shock is given by (3.1). 

(c) x,, =x,>, the resulting shock position has been found. 

In case (ii) a single shock wave appears. In contrast to case (i) where, in addition 
to the geometrical correction procedure, the provisional positions of the shocks 
have to be compared, the shock position is given by our principle (3.1) automati- 
cally. The resulting shock may “devour” a part or all of the rarefaction wave. 

Continuation of this process shows that every configuration of an IMR at time 
T can be split up uniquely is a connected single-valued relation via the conservation 
principle. This function represents the entropy solution over the considered interval. 

In order to maintain accuracy in smooth regions at a final time T it is necessary 
to discretise the (eventually) modified initial condition sufficiently line. This can be 
checked a priori, since the following inequality provides an upper bound on the 
distance between two neightbouring values of the graph. 

Let h = x1 - x2 and 1 be a jump point of uO. Then, 

1(x1+ V’(u,(x,)))- (~2 + T’f’(~,(x,)))l 

G h + T If”(r)l luo(xl) - uo(x,)l 

bh+ TI.f-“(rl)l Clw,(x,)--oG.)l+ l~,(~)-e,(x,)ll 
max 

XE [.i-,.q] bb(x)lll, 

where v E Cmin(~o(xlX uo(a), ho>, max{uo(x,), uo@), w&d1 I. 
Thus, linear interpolation is sufficient for representing the solution in smooth 

regions. Furthermore, a local refinement of the x-discretisation in smooth regions 
has no essential effect on the CPU time (in contrast to finite difference schemes). 

Implementation of the algorithm: 

(1) Discretise the (eventually modified) initial condition. 
(2) Apply the method of characteristics, i.e., the transport of u0 along charac- 

teristics at the prescribed time. In order to get a connected curve one has to 
interpolate (for an appropriate line discretisation linear interpolation is sufficient) 
between the u-values. 

(3) If KSG(0) becomes multivalued, determine the first two turning points 
(discretisation of the initial condition leads to an oriented set of points). The provi- 
sional shock position is given by our principle (3.1) iteratively. Areas are computed 
by a quadrature rule; the summed trapezoidal rule is used in our numerical 
examples. 
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(4) Next one has to check whether interactions with possible rarefaction waves 
took place. If this happens, calculate the position of the resulting shock and 
continue with the next pair of turning points. Otherwise consider the next pair of 
turning points and determine the provisional shock position within the MR. 

(5) Again check whether interactions between this second provisional shock 
with rarefactions take place (there can be m rarefaction waves between both pairs 
of turning points). If no interaction takes place, continue with the next pair of 
turning points. Otherwise find out whether the shock has interacted with the first 
shock or some of the rarefaction waves. 

This procedure finishes with the resolution of the ambiguity, restricted by the last 
two turning points. Since it is possible that the first and the last shock interact, at 
the present all successive determined shock positions have to be considered as 
provisional. In the case of Riemann initial data one computes the (provisional) 
shock positions by the Rankine-Hugoniot condition. This is much faster than 
applying our conservation principle. 

There is an interesting connection between the time-dependent version of the 
method of convex hull (applied to the flux) and the GSC method for (2.2) with 
Riemann initial data. In [S] Chang constructs qualitatively the piecewise smooth 
solution to (2.2) for n constant initial values under the assumption that f~ C2 has 
at most finitely many inflection points. In his geometrical construction process the 
involved waves as well as their variations in u can be easily read off. However, this 
is not the case for the exact positions of the waves, especially after interactions. In 
the same way Whitham’s method in [18] can be related to the time-depended 
version of the method of convex hull. 

Extending our method to the general equation 

d 

we introduce the system of differential equations 

dx 
,,=m; 4 t), (3.2) 

where g - h -f,. Now we have to transport u0 (resp. z&j) by the flux associated 
with (3.2). In a couple of cases this can be done explicitly. It is well known, see 
[16], that system (3.2) need not have a global weak solution. 

Equation (2.2) represents a special case of 

CG(u)l, + CFCuJ1.r = 0, u(x, 0) = ug (x). (3.3) 

Assuming F, GE C2, G’ > 0, and H’(u) := (F’(u)/G’(u))’ has at most finitely many 
inflection points, Ballou [l] shows existence and uniqueness of the weak solution. 
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Let u=G(u). Since G’>O, u=G-‘(u) is well defined and with A(v)=F(GP’(u)), 
(3.3) reduces to 

ut + [A(o = 02 uo(x) = G(u,(x)). 

This is equivalent to writing (3.3) along the characteristics 

dG o dx 
-= --H(u). 
dt ’ dt 

The transport is then given by (X + M(u), G(u)). For the inversion of G at shock 
points select the appropriate left/right limit values. 

4. APPLICATION OF THE GSC METHOD TO CONSERVATION LAWS 
IN Two SPACE DIMENSIONS 

In this section we consider the application of the GSC method to scalar conser- 
vation laws with a source term in two space dimensions 

u,+-&(u;., y)+q-*(24;x, Y)+~(~;.Y y)=O, 4 
x, YER, t>o. (4.1) 

Let fi ,f2 E C’, s E C w.r.t. u, x, y. Unfortunately, an extended GSC method is in 
general not directly applicable to (4.1). Of course, the method of characteristics 
gives the solution in regions where u is smooth, but it is a priori not clear how to 
construct the solution from the multivalued relation in some region. Inspired by the 
“equal area” principle one might think that in the (x, y; u) space an “equal volume” 
approach would be suitable for determing shock surfaces. Indeed, this seems 
possible in the case of scalar two-dimensional conservation laws. 

If, however, f, =fi =f in (4.1), which is the case in many applications, one can 
transform (4.1) in a quasi-one-dimensional problem which depends on a parameter. 
The application of the GSC method for every (fixed) parameter is then 
straightforward. Let f, = fi E f: Introducing the coordinate transformation 
(x, Y) -+ (5, ‘I) defined by 

x+Y 
4=,, 

X-Y 
YI’T 

and setting u(x, y; t) = ~(5, q; t), (4.1) reads 

u, +fu(u; r + YIP 5 -‘lb+ = g(u; t + 119 t - 9) (4.2) 

with g = -(s+f{). Equation (4.2) represents, for each fixed parameter u E R, a 
one-dimensional problem. Hence, the solution along every plane { (5, vi) x t, 
vi = const }, can be determined independently from other planes { (5, qz) x t}. GSC 
can also be applied to (4.1) for slightly different situations. 
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LEMMA [17]. Let f,=fi(u), LE C2, i= 1, 2. Then, (4.1) can be transformed into 
a quasi-one-dimensional conservation law with source term by a linear transformation 
in the independent variables 

(x3 Y; t) -+ (5(x, y; t), r(x, y; t), t) 

if and only if 

Since (4.2) depends explicitly only on 5, the discretisation in 5 should be much 
finer than in q. Furthermore, the computing time of the GSC method is propor- 
tional to the number of rl values. Therefore we recommend a coarse discretisation 
in q and (linear) interpolation of the solution between neighboring r~ values. 

An estimation in the order of magnitude of the computing effort is given by the 
number of discretisation points in the considered q-interval times the CPU time for 
computing the solution of the one-dimensional problem to the corresponding fixed 
q-value. 

In [ 171 the second author shows that in case of f, =f2 = A f convex, the 
Riemann problem can be solved directly with the GSC method without trans- 
forming the problem into a quasi-one-dimensional one. Here, the Cauchy problem 

u, + Lou)1 r + IIf )‘= 0, 4x3 y; 0) = u,(x, y) (4.3) 

with initial data piecewise constant on a finite number of wedges focused in a single 
point in the (x, y) plane is defined as a two-dimensional Riemann problem; w.1.o.g. 
this point can be taken to be x=0, y=O. 

Since the solution of (4.3) is invariant under dilations (x, y; t) -+ (cx, cy; ct), 
c > 0, we may describe a solution completely by describing it along the plane t = 1. 
In the region {(x, y) E [w2; x2 + y* B r:, r, > 0}, where r1 depends only on f and u0 
along the considered plane t = t, , the solution is obtained as the solution of non- 
interacting one-dimensional Riemann problems, due to the principle of finite 
domain of dependence. Such one-dimensional problems can be solved directly with 
the GSC method as well as certain interactions, which occur by extrapolating the 
one-dimensional solution into the region {(x, y) E Iw2; x2 + y* < rf} by “fitting 
together” the nonlinear waves. Some interactions like shock/rarefaction, can be 
resolved by determination of the position of the resulting wave by a quadrature 
rule. 

A further advantage of our method is that oblique shocks occurring in the 
solution of (4.2) (resp. (4.3)) can be accurately resolved in the (4, ye) region. This 
is in contrast to finite difference methods based on dimensional splitting for the 
corresponding problem in the (x, y) plane. Crandall [8] shows that error due to 
dimensional splitting in computing oblique shocks by any finite difference method 
can be significant. 
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Remarks. Possible applications of the GSC method to hyperbolic systems of the 
form 

u, + Cf(u)l; = 0, u, f E R”, x E R, t > 0 (4.4) 

have not yet been investigated. An extension of our method is complicated by the 
fact that the components of the state vector u are coupled by the Jacobian 
A(u) := df/du. In the purely linear case when A is a constant matrix, system (4.4) 
can be diagonalized by a similarly transformation resulting in n linear decoupled 
transport equations. They can be easily solved, just by transport. Another special 
case is given by the system 

u,,t+ Cfibl3 ...2 ui)l.x=03 i = 1, . . . . n, 

which appears in the field of oil recovery, see [lo]. Now, A is a lower triangular 
matrix and a solution can be constructed successively, since the solution of the kth 
equation depends only on the (k - 1) first states. 

5. NUMERICAL EXAMPLES 

In this section we show the results of some test problems for 

u, + Cf(u)lx = h(~), 4-C 0) = %(X) (5.1) 

computed by the GSC method. The calculations were performed on an IBM 
compatible AT 80386. In all examples the CPU time is between 0.54 and 3.19 s. 

EXAMPLE 5.1. 

The flux function f has two inflection points in [ - 1, 11. The uncorrected version 
given by the transport at time t = 0.15 together with the three shocks are shown in 
Fig. 5. The shocks are represented by the heavy lines. CPU time is 3.19 s. 

EXAMPLE 5.2. 

fW=$ h(u) = -u*, h(X) = 
i 

-l;x<O 
2; x > 0. 

The solution exists only for t < 1, since at t = 1 the solution escapes from every 
compact subset of the state space. Figure 6 shows the uncorrected version and the 
solution at t = 0.4, where the shock position is xs= 0.198 and the CPU time is 
0.54 s. At t = 0.99 the solution consists of a single shock with position xs = 48.72, 
shown in Fig. 7; the CPU time is 1.14 s. The use of Godunov’s scheme, for example, 



54 BijING, WERNER, AND JACKISCH 

FIGURE 5 

FIGURE 6 

FIGURE I 
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and Sod’s operator splitting requires a small CFL number and results for t > 0.75 
in numerical instabilities. 

The next example also shows that more complicated problems can be solved 
effectively with the GSC method. 

EXAMPLE 5.3. 

h(u) = 0, %(X) = 
3 + cos(x); x < 0 

- 3 - sin(x); x > 0. 

In the x-interval [ - 15, 161 the uncorrected version given by the transport at 
t=0.4 together with the five shocks, represented by the heavy lines, are shown in 
Fig. 8. The shock posititions are -7.38; - 1.097; 1.091; 6.9; 13.18 and the CPU 
time is 2.20 s. 

EXAMPLE 5.4 (Buckley-Leverett equation). The simultaneous one-dimensional 
flow of two immiscible fluids through a porous medium in the absence of capillary 
pressure and gravitational forces can be described by the equation given by Buckley 
and Leverett (BL) in [4]. We consider the flow of oil and water through sand and 
denote by u the water saturation in the sand. Then the BL equation is 

.,+f Cf(u)l,=O, 

where f(u) = [( 1 + crk, (~))/k, (u)] ~’ is the flux function of the flow stream, k, and 
k, are the relative permeabilities of sand to oil and to water, respectively; LY = p,/p, 

FIGURE 8 
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is a constant, pw (resp. pO) are the viscosities of water (resp. oil). Q is the total flow 
and d is the porosity. 

We remark that f has the following properties: df/du is nonnegative and has 
exactly one interior maximum and one inflection point in [0, 11. 

We report here on the results of the GSC method with the model flux 

f(u)= u2 
L?+a(l -u)2’ (5.3) 

The considered domain is 0 < u < 1 and we take M = 4, Q/4 = 1. The (continuous) 
initial condition is 

II; x<o 

i 

0.1 
uo (xl = xi 

O<X<l 

1 
i-i; 

x> 1. 

In Fig. 9 we show the solution at time 0.2 and in Fig. 10 at time 1. The CPU time 
at t = 1 is 2.68 s, which is smaller than the CPU time 2.92 at t = 0.2! The reason for 
this phenomena is that more iterations for comparing smaller areas may be needed, 
because shock positions are computed with accuracy lo-*. We quote from [7] that 
the finite difference methods employ exceedingly small time steps, resulting in 
excessive computational requirements. 

FIGURE 9 
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FIGURE 10 

-..- --- 
0.5 

FIGURE 11 
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The final test problem (5.5) is taken from [6] and resolves the ambiguities of the 
example in the Introduction. The flux is given in (5.3) with CI = 0.25 and 

X<-; 
-;<x<o 
x > 0. 

The solution is shown at time 0.4; CPU time is 3.13 s. 

SUMMARY 

A complete class of nonlinear partial differential equations, namely the Cauchy 
problem ( 1.1) for generic cases, has been solved effectively by the GSC method, no 
matter how complicated the flux and the initial condition is. All test problems 
clearly demonstrate the superiority of our method in quality and computing time 
compared to any other numerical method. Furthermore, GSC is the fastest method 
known to the authors solving the considered equation for larger times. 
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